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Outlook part 1

1. Sequence analysis in context: theory and methods

2. Basic Sequence Terminology
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1a. Sequence analysis in context: theory
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Sequences in the Social Sciences 
Example: family formation

4



Family formation sequences
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Sequences sorted by age of first birth

Family formation sequences

NLSY 79, women born 1957-1964
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Family formation sequences
Highest 
earnings

Lowest 
earnings

Goal: 
group individuals with similar trajectories („ideal 

types“) to assess determinants and correlates of family 
formation processes

Aisenbrey, S., & Fasang, A. (2017). The interplay of work and family trajectories over the life course: 
Germany and the United States in comparison. American Journal of Sociology, 122(5), 1448-1484. 7



Sequence analysis in context: theory

“Time Matters”: Process / mechanisms as the fundamental building blocks of 
sociological analysis (Processual Sociology, Abbott, 2016):

“… social reality happens in sequences of actions located within 
constraining or enabling structures” (Abbott 1992)

“Narrative Positivism” → process-based

“General Linear Model” → variable-based
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Processual Social Science

“By a processual approach, I mean an approach that presumes that everything in 
the social world is continuously in the process of making, remaking and unmaking 

itself (and other things), instant by instant.” (p. x)

“The world of the processual approach is a world of events. Individuals and social 
entities are not the elements of social life, but are patterns and regularities defined 

on lineages of successive events.”

“[…] process outcomes are long run stabilities established by myriads of individual 
events.” (p. 176)  “[…] it is the whole walk that is the outcome.”

Andrew Abbott (2016) “Processual Sociology”
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Most common fields of application

• Life course sociology

• (Family) demography

• Labor market and career research
• Social stratification

• Aging and retirement

• Welfare state and social policy

• Time use

But: many different applications: 
regional patterns of lynching, 
holocaust survivors, cultural 
sociology, regime changes in 
political science/history, Jaina
monks in India, …
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Life Course Paradigm (Elder et al. 2003, Mayer 2009)

• Development as a life long process 

• Time: Timing and sequencing of life course processes matter for their 
correlates and consequences

• Place: Macro-structural contexts/social policies shape life course 
processes

• Life course norms about the appropriate timing and sequencing of 
events

• Cumulative Advantage and Dis-advantage (Dannefer 1987, DiPriete and Eirich
2006)
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Core theoretical concepts

• Timing and sequencing/order of events

• Same process – different speed? (Fasang & Raab 2014)

• Zig-zag processes / back and forth movements

• Instability, volatility, precarity

• Cumulative advantage/disadvantage (CAD)

• Path-dependency

• “Turning points”

• “Ideal types” of processes

• …...
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1b.Sequence analysis in context: methods
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Aims of longitudinal data analysis

• Event history analysis
Whether and/or when do events occur? 

• Panel and growth curve/group-based trajectory models
How does one outcome change over time (metric/binary)?

• Sequence analysis
How do processes of categorical states develop over time? 
Analyzing trajectories/stories as a whole

Variable-based

Process-based
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Sequence analysis in context: methods
Event history analysis Panel Regression Sequence analysis

Theoretical concept transition, duration change 
(binary/metric)

trajectory (categorical)

Scientific tradition

Assumption about 
data generation

Objective to 
identify…..

Broader theoretical 
assumptions
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Sequence analysis in context: methods
Event history analysis Panel Regression Sequence analysis

Theoretical concept transition, duration change 
(binary/metric)

trajectory (categorical)

Scientific tradition stochastic data modeling tradition narrative positivism, 
algorithmic tradition

Assumption about 
data generation

Objective to 
identify…..

Broader theoretical 
assumptions

16



Sequence analysis in context: methods
Event history analysis Panel Regression Sequence analysis

Theoretical concept transition, duration change 
(binary/metric)

trajectory (categorical)

Scientific tradition stochastic data modeling tradition narrative positivism, 
algorithmic tradition

Assumption about 
data generation

stochastic process,

causality

none

black box

Objective to 
identify…..

Broader theoretical 
assumptions
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Sequence analysis in context: methods
Event history analysis Panel Regression Sequence analysis

Theoretical concept transition, duration change 
(binary/metric)

trajectory (categorical)

Scientific tradition stochastic data modeling tradition narrative positivism, 
algorithmic tradition

Assumption about 
data generation

stochastic process,

causality

none

black box

Objective to 
identify…..

timing of single 
transitions/durations

probability /change patterns of sequential 
equivalence

Broader theoretical 
assumptions
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Sequence analysis in context: methods
Event history analysis Panel Regression Sequence analysis

Theoretical concept transition, duration change 
(binary/metric)

trajectory (categorical)

Scientific tradition stochastic data modeling tradition narrative positivism, 
algorithmic tradition

Assumption about 
data generation

stochastic process,

causality

none

black box

Objective to 
identify…..

timing of single 
transitions/durations

probability /change patterns of sequential 
equivalence

Broader theoretical 
assumptions Structure → occurrence of / 

change in events

Structure + agency 
interact across process 

→ sequence

→ Complementary methods for different questions
19



Sequence analysis

• Sequences are empirically observed traces of temporally ordered events 

• Goal: Analyze regularities in categorical sequences 

• Categorical sequences in the social sciences consist of sequentially linked 
categorical states that make up a social process (‘qualitative’ states) 

• → Sequence analysis is at the intersection of qualitative and quantitative 
methodology: it is the “quantitative” analysis of sequences of “qualitative” states
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Examples of categorical state sequences

• employment careers (Widmer and Ritschard, 2009): full time employed, 
unemployed, on family leave, permanent or fixed term employment

• pathways to adulthood (Bras, Liefbroer, and Elzinga, 2010): living with parents, 
living alone, living with spouse, completing education, internship, employment

• family formation processes (Elzinga and Liefborer, 2007): single, married, 
cohabiting, divorced

• time use (Lesnard 2006): sleep, eat, work, leisure, child care, exercise over the 
course of a day
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2. Basic terminology: What is a sequence?
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Basic terminology: What is a sequence?

• Sequence: ordered lists of a discrete set of elements

• The set of elements constituting a sequence is called a state space or 
alphabet 𝐴

• A sequence 𝑥 of length 𝑘 can be written as

𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑘 with 𝑥𝑖 ∈ 𝐴

• Most social science applications examine recurrent sequences, which 
allow for repeated occurrence of the same states
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Episodes & Transitions

• A single state observed in isolation or series of consecutively repeated 
states constitute episodes or spells

• Change of state = transition = beginning of a new episode

Sequence A S S LAT COH COH MAR

Sequence B COH MAR MAR MAR COH COH

S= Single, LAT = Living Apart Together (Dating), COH = Cohabiting, MAR = Married 
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• A single state observed in isolation or series of consecutively repeated 
states constitute episodes or spells

• Change of state = transition = beginning of a new episode

Sequence A S S LAT COH COH MAR

Sequence B COH MAR MAR MAR COH COH

Episode/spell Transition

Episodes & Transitions
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Notation – State Sequence Format (STS)

LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-S-S-S-S-S-S-LAT-LAT-LAT-LAT- LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LA

T-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT- LAT-LAT-LAT-LAT-LAT-LAT-LAT- LAT-LAT-LAT-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-LAT-

LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LA

T-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-LAT-LAT-LAT-LAT-LAT-L

AT-LAT-LAT-LAT-LAT-COH-COH-COH-COH-COH-COH-COH-COH-COH-COH-COH-COH-COH-COH-MAR-MAR-MAR-MAR-MAR-MAR-M

AR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-

MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR

-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MA

R-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR

Example: Partnership sequence of length k=264 
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Notation – State Permanence Sequences (SPS)

(LAT,13)-(S,6)-(LAT,33)-(S,24)-(LAT,41)-(S,35)-(LAT,10)-(COH,14)-(MAR,88)

Example: Partnership sequence of length k=264 
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Notation – Distinct Successive State Format 
(DSS)

LAT-S-LAT-S-LAT-S-LAT-COH-MAR

Example: Partnership sequence of length k=264 
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Defining sequences – the alphabet

Substantive and methodological considerations:
• Balance parsimony and detail (usually between 5-10 states) 

• Infrequent and/or substantively irrelevant categories can often be combined

• Don't lose sight of your research question  

• Start big and reduce

• Large alphabets lead to less stable cluster analysis results, especially when 
case numbers are small

• Concurrent/overlapping states can be their own category

• Specification of alphabet is very consequential for results (like – which 
variables do I include in my model?)

29



Sequence length and time intervals

What defines the starting point of the sequences? 
• Process-time: Age or a specific transition, start of process

• Calendar-time: fixed time point

• Comparing individuals at different ages can be problematic

• Time intervals should be calibrated to temporal variation in the sequences: 
combine to larger units (months, quarters, annual), when not much change is 
happening, reduce to smaller units otherwise

30



Sequence length and time intervals

• Alphabet size and sequence length define the number of possible 
sequence realizations and affect the stability of typologies

• Shorter sequence length can reduce complexity and computation time

• Specification of sequence depends on research question (and available 
data)

Sequence length

5 10

No. of
elements

in the
alphabet

5 55

3,125
510

9,765,625

10 105

100,000
1010

10,000,000,000
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Unequal sequence length and missings

• Most SA applications work with sequences of equal length

• Common strategies:
• Complete case analysis

• Add additional missing state to alphabet

• Replace gaps with valid values using some sort of „imputation“

32



Things to consider

Computing load:
• Bottleneck: computation of the pairwise dissimilarity matrix
• Samples of up to 10,000 cases and sequences with a length of up to few 

hundreds seem to be feasible (but it takes some time…)
• Size of the alphabet only has a modest impact; however: visualization suffers 

from too large alphabets (alphabet length preferably below 10) 

Weights:
• Most of the TraMineR functions allow for using weights

if weights are assigned when defining the sequence object (seqdef-function) 
they are automatically passed to other TraMineR-functions (e.g., seqplot)

• Weights could also be used to reduce the computing loads if they are used to 
get rid of doublets in the data

33



Strengths of sequence analysis

• pattern search of complex processes over time

• holistic perspective on sequences as a whole

• complementary to regression based methods, often useful in 
combination with other methods
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Outlook part 2

1. Introduction of the dataset

2. Defining and describing sequence data

3. Visualization of sequence
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1. Introduction to the dataset 
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Pairfam

The data for examples come from the German Family Panel (pairfam), 
release 10.0 Brüderl et al. (2019). A description of the study can be 
found in Huinink et al. (2011).

We gratefully acknowledge the permission of the pairfam team to share a reduced version of their data to illustrate all techniques 
presented in the book with real-world survey data.

If you are interested in using the complete data sets please turn to: https://www.pairfam.de/en/

38

https://sa-book.github.io/rChapter0-0.html%23ref-ZA5678
https://sa-book.github.io/rChapter0-0.html%23ref-ZA5678
https://sa-book.github.io/rChapter0-0.html%23ref-Huinink2011
https://sa-book.github.io/rChapter0-0.html%23ref-Huinink2011
https://www.pairfam.de/en/


Data format

• TraMineR prefers sequences stored in wide format

• Regular panel data can be easily prepared for sequence analysis

• If correctly formatted TraMineR can handle episode data as well 

39

id state1 state2 state3 state4 state5 state6 state7
1 Single Single Single LAT LAT LAT MAR
2 LAT LAT Cohab Cohab Single LAT Cohab



Data format

We will use:

• Family formation trajectories

• Yearly data from age 18 to 40 

• Sequences of equal length (see backup slides at the end of this pdf for 
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2. Defining and describing sequence data
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Sequences in TraMineR

• TraMineR can handle different input data formats (see: seqformat)

• First step of SA in R: seqdef-function
• Most important input: sequence variables
• Allows to specify:

• Long and short labels
• Colors and other settings for plots
• Weights 
• …

• Alphabet (seqrecode) and granularity 
(TraMineRextras::seqgranularity) can also be changed after sequence 
object has been defined

42



Time spent in different states & 
occurrence of episodes

43

Time spent in state x in months Number of episodes

State Mean SD Rel. freq. Mean SD

S 72.5 69.8 0.27 1.6 1.2

LAT 48.0 43.9 0.18 1.8 1.3

COH 48.6 53.3 0.18 1.0 0.8

MAR 95.0 78.9 0.36 0.8 0.5



Time spent in different states & 
occurrence of episodes

44

Time spent in state x in months Number of episodes

State Mean SD Rel. freq. Mean SD

S 72.5 69.8 0.27 1.6 1.2

LAT 48.0 43.9 0.18 1.8 1.3

COH 48.6 53.3 0.18 1.0 0.8

MAR 95.0 78.9 0.36 0.8 0.5

seqmeant(partner.month.seq, serr = TRUE) seqmeant(seqdss(partner.month.seq),serr = TRUE)

seqmeant(partner.month.seq, prop = TRUE)



Number of transitions

45

Granularity Mean SD

Monthly data 5 2.6

Yearly data 4 1.9

seqtransn(family.month.seq)
seqtransn(family.year.seq)



Transition rates

46

Transition matrix of sequences stored in STS format
State at 

Monthly granularity Yearly granularity

State at S LAT COH MAR S LAT COH MAR

S 0.98 0.02 0.00 0.00 0.81 0.14 0.04 0.01

LAT 0.02 0.96 0.02 0.00 0.12 0.68 0.16 0.04

COH 0.00 0.00 0.98 0.01 0.04 0.02 0.80 0.14

MAR 0.00 0.00 0.00 1.00 0.01 0.01 0.00 0.98

Transition matrix of sequences stored in DSS format

State at 

State at S LAT COH MAR

S 0.00 0.91 0.07 0.02

LAT 0.42 0.00 0.50 0.08

COH 0.20 0.12 0.00 0.68

MAR 0.44 0.46 0.11 0.00

• Transition rates for monthly data rather 
useless

• Transition rates for yearly data produce 
more interesting results

• Using DSS instead of STS sequences 
allows for a focused view on transitions 
(by definition stability is ignored; main 
diagonal = 0)



Transition rates

47

Transition matrix of sequences stored in STS format
State at 

Monthly granularity Yearly granularity

State at S LAT COH MAR S LAT COH MAR

S 0.98 0.02 0.00 0.00 0.81 0.14 0.04 0.01

LAT 0.02 0.96 0.02 0.00 0.12 0.68 0.16 0.04

COH 0.00 0.00 0.98 0.01 0.04 0.02 0.80 0.14

MAR 0.00 0.00 0.00 1.00 0.01 0.01 0.00 0.98

Transition matrix of sequences stored in DSS format

State at 

State at S LAT COH MAR

S 0.00 0.91 0.07 0.02

LAT 0.42 0.00 0.50 0.08

COH 0.20 0.12 0.00 0.68

MAR 0.44 0.46 0.11 0.00

seqtrate(family.month.seq)
seqtrate(family.year.seq)

seqtrate(seqdss(family.year.seq))



Modal and representative sequences

• Modal sequence:
Sequence composed of the most prevalent states at each position of 
the sequence; usually not observed in the data

48

Granularity Modal Sequence

Monthly data (S,102)-(MAR,162)

Yearly data (S,9)-(MAR,13)

modal.month.seq <- seqdef(as_tibble(seqmodst(partner.month.seq)))
print(modal.month,seq, format = "SPS")

modal.year.seq <- seqdef(as_tibble(seqmodst(partner.year.seq)))
print(modal.year.seq, format = "SPS")



Modal and representative sequences

• Representative sequences
• Observed sequences that represent the 

data best
• Require a dissimilarity matrix
• Different criterions can be used to extract 

representatives
• Example on the left:

• neighborhood density criterion: sequences are 
considered neighbors if their pairwise dissimilarity 
falls below a predefined threshold (10% of the 
maximum possible distance value)

• subset of nonredundant representative 
sequences with a total coverage of at least 
25%

49

Set of representative sequences

Sequence Coverage Assigned

(S,1)-(LAT,2)-(MAR,19) 5.7 6.5

(S,20)-(MAR,2) 4.4 25.2

(S,4)-(LAT,1)-(COH,1)-(MAR,16) 3.8 5.3

(LAT,3)-(COH,2)-(MAR,17) 3.1 11.4

(S,2)-(LAT,2)-(COH,3)-(MAR,15) 2.7 17.1

(S,5)-(LAT,2)-(COH,2)-(MAR,13) 2.7 23.5

(COH,2)-(MAR,20) 2.6 3.0

(S,1)-(LAT,5)-(MAR,16) 2.3 8.0

Total Coverage 27.5 100.0



Modal and representative sequences

50

partner.year.om <- seqdist(partner.year.seq, method="OM", sm="CONSTANT")
partner.year.rep <- seqrep(partner.year.seq, diss=partner.year.om, criterion="density")
summary(partner.year.rep)

Set of representative sequences

Sequence Coverage Assigned

(S,1)-(LAT,2)-(MAR,19) 5.7 6.5

(S,20)-(MAR,2) 4.4 25.2

(S,4)-(LAT,1)-(COH,1)-(MAR,16) 3.8 5.3

(LAT,3)-(COH,2)-(MAR,17) 3.1 11.4

(S,2)-(LAT,2)-(COH,3)-(MAR,15) 2.7 17.1

(S,5)-(LAT,2)-(COH,2)-(MAR,13) 2.7 23.5

(COH,2)-(MAR,20) 2.6 3.0

(S,1)-(LAT,5)-(MAR,16) 2.3 8.0

Total Coverage 27.5 100.0



3. Visualization of sequences
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Types of graphs

Tabular vs. graphical inspection

• The complexity of sequence data call for a graphical inspection

• Thorough tabular representations of the data run the risk of 
presenting an overwhelming amount of information, that might  
hamper the recognition of regularities 

• Even visualizations might be overwhelming 

• Two groups of graphs:
• Data summarization graphs:

aggregate and summarize the information stored in the sequences
• Data representation graphs

render individual sequences instead of aggregate summary measures
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Color palettes

• If colors are not specified TraMineR uses palettes from 
RColorBrewer package

• References for on choosing colors: 
Zeileis et al. (2009) and Zeileis et al. (2019)

• The R community provides a variety of packages for choosing suitable 
color palettes (RColorBrewer, colorspace) 

• Other interesting resources:
• https://colorbrewer2.org/

• https://github.com/EmilHvitfeldt/r-color-palettes and 
https://github.com/EmilHvitfeldt/paletteer

53

https://dx.doi.org/10.1016/j.csda.2008.11.033
https://arxiv.org/abs/1903.06490
https://colorbrewer2.org/
https://github.com/EmilHvitfeldt/r-color-palettes
https://github.com/EmilHvitfeldt/paletteer


Pre-defined Color palettes
RColorBrewer
display.brewer.all()

54

colorspace
hcl_palettes(plot = TRUE)



Data summarizing graphs: Modal state plot
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Data summarizing graphs: State distribution
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seqdplot(family.year.seq, main = "Yearly Granularity")



Data representation graphs: Sequence index plot

57

• Distribution plots easy to consume

• But potentially misleading due to 
aggregation: not strictly longitudinal, 
just repeated cross-sections 
→ requires careful interpretation

• Different sequence sets can produce 
the same distribution

• Index plots show how the individual 
sequences unfold 

• Index plots only feasible for a limited 
number of cases (300-400)



Data representation graphs:
Relative frequency sequence plot

58

• The standard sequence  index plot are at risk of overplotting when working 
with larger samples 

• Even without overplotting high level of visual complexity
• The relative frequency sequence index plot (Fasang & Liao 2014) addresses 

these issues
• It renders only a group of representative sequences instead of the full 

sample
• Procedure:

• Sequences are sorted (by timing of a specific transition or the score of the first factor 
obtained by multidimensional scaling

• After sorting the sequences are divided into equally sized frequency groups (up to 100 
seem to be feasible) 

• Only the medoid sequence of the frequency groups are rendered in an index plot



Data representation graphs:
Relative frequency sequence plot

# compute distance matrix
family.year.om <- seqdist(family.year.seq, 

method="OM", 
sm= "CONSTANT")

# render default plot (TraMineRextras)
seqplot.rf(family.year.seq,

diss=family.year.om,
k=37)
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And now the hands-on!

-----PHDP_SA_workshop\02_hands_on\part2
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Outlook part 3

1. Complexity and other summary measures (within sequence variation)

2. Optimal matching (between sequence dissimilarity)

3. Introduction to cluster analysis
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1. Complexity and other summary measures
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Summary measures of individual sequences

• Unvalued (complexity, turbulence, and entropy) and valued summary measures:

• Degradation: proportion of positive to negative changes in sequence (net mobility)

• Badness: states weighted by degree of undesirableness of each state and probability to 
end up in “bad state” (enduring disadvantage and downward mobility)

• Insecurity: composite of complexity, degradation and undesirableness

• Integration into positive state: probability to end up in a positive state (upward mobility)

64



Summary indicators on 
individual sequence variability

65

Ritschard, G. (2021). Measuring the Nature of 
Individual Sequences. Sociological Methods & 

Research, 00491241211036156.

Struffolino, E. and M. Raab (forthcoming). 
Sequence Analysis. Sage, Series: Quantitative 

Methods in the Social Sciences



Example: Family life course complexity varies much more between 
European countries than across cohorts

66

Van Winkle, Zachary, and Anette Eva Fasang. "The complexity of
employment and family life courses across 20 th century Europe." 
Demographic Research 44 (2021): 775-810.

number of transitions in a sequence, q(x) divided by 
the theoretical maximum number of transitions 

possible, qmax; 
longitudinal entropy of a sequence, h(x) divided by 

the theoretical maximum, hmax. 

Complexity is minimal in sequences composed of a 
single state and maximal in sequences that contain 
each state element with equal durations and have 

the maximum number of transitions. 



Example: Badness and degradation indices in work trajectories predict 
political interest at mid-life

67

Badness Degradation

Data: German Socioeconomic Panel (GSOEP), 
Fasang 2021

→ Downwardly mobile individuals (high badness & high 
degradation) have lower political interest at mid-life



2. Optimal Matching (OM)
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OM: between sequence dissimilarity

Originally developed by Vladimir Levensthein in 1965, has 
been widely used in the natural sciences for identifying 
similarity in DNA strings and in computer science as the 
basis of word- and speech-recognition algorithms. 

Andrew Abbott first introduced sequence analysis and OM 
to the social sciences (1990s)

69



Optimal Matching

• Goal
Quantify degree of similarity of sequence pairs – actually OM is assessing the 
dissimilarity  

• Computational Approach
Find the “cheapest” way to transform one sequence into another (sequence 
alignment)

• Result
Pairwise distance matrix for all possible sequence pairs

70



Typical Steps in OM

1. define sequence: start, end, alphabet of states

2. calculate distances between sequences by applying OM Algorithm →
obtain distance matrix

3. further analysis of distances → cluster analysis: typology of trajectories

Alternatives to clustering of distances:
• further analysis of groups/distances (visual, regression based methods)
• distances as direct indicators of dissimilarity (de-standardization) or as 

input to other techniques (BIC/LRT adaptations for groups comparisons)

71



Example: distance matrix for four sequences

72

Distance is a metric of dissimilarity:
High values = very dissimilar sequences
Low values = very similar sequences, 0= identical sequences
Note: There are axiomatic differences between distance & similarity 

1 2 3 4

1 0 1 5 2

2 1 0 0 3

3 5 0 0 2

4 2 3 2 0



Calculating sequence distance with OM

73

Finding the “cheapest” way to transform one sequence into another = distance 

between two sequences

For this, OM uses three transformation operations with specific costs: 

1. Substituting one state with another  → sub costs

2. Inserting/deleting a state → indel costs

•



OM: example of aligning two sequences

74

Alphabet of States  

Unemployment= UE

Education = ED

Internship = I

Employment = EM

Transformation Costs

sub costs = 2

indel costs = 1

Time t1 t2 t3 t4

UEID1 I EM EM

EDID2 UE EM

InsertionSubstitutions

2 2+ 1+

Cost/distance

= 5



Cost specification and sequence dissimilarity

75

Insertion-Deletion Substitution

Preserved Events Time

Altered Time Events

To emphasize similarity in terms of timing of transitions/states: 
→ high indel costs & low substitution costs

To emphasize similarity in terms of the order of states: 
→ low indel costs & high substitution costs



“The assignment of transformation costs 
haunts all optimal matching analyses”

76

Katherine Stovel, Mike Savage and Peter Bearman, 1996, “Ascription into 
Achievement: Models of Career Systems at Lloyds Bank, 1890-1970”, American 
Journal of Sociology, 102, p. 394

Yes and No
• some cost specifications not sensible for most social science applications
• many produce similar results
• results often more sensitive to alphabet and clustering
• reviewers usually want to see justification and robustness checks

See: Studer, M., & Ritschard, G. (2016). What matters in differences between life trajectories: A 
comparative review of sequence dissimilarity measures. Journal of the Royal Statistical Society: Series 
A (Statistics in Society), 179(2), 481-511.
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See: Studer, M., & Ritschard, G. 
(2016). What matters in 
differences between life 
trajectories: A comparative review 
of sequence dissimilarity 
measures. Journal of the Royal 
Statistical Society: Series A 
(Statistics in Society), 179(2), 481-
511.



3. Cluster analysis
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Objectives

Partition the Sequences into Groups that are:

• As similar to each other as possible

• As dissimilar to sequences in other groups as possible

Cluster Analysis is a tool to simplify complex data:

• This is achieved by ignoring minor differences
• Produces meaningful typologies

• Danger of ignoring major differences
• Can lead to false conclusions 
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Objectives

Description
• Which ideal typical trajectories exist in the data?

Further Analysis Trajectory Types/Clusters
• Why are given ideal types in the data?

• Institutions, historical circumstances, etc.

• Who is a member or which life course type and why?
• Race, gender, social class, etc.

• What are the consequences of belonging to a life course type?
• Part-time employment for women → lower pensions & higher old-age poverty 
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Cluster analysis: algorithms

• Hierarchical Methods
• bottom-up, agglomerative-nesting (starts by grouping closest two cases)

• top-down, divisive (starts by splitting full sample)

• Partitioning around centers
• k-means (for quantitative data)

• partitioning around medoids (more general)
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Cluster analysis: many different methods, 
Ward most commonly used
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# apply the clustering algorithm Ward 
fam.ward0 <- hclust(as.dist(om.fam), method = "ward.D", members = 
family$weight40) 
 

#plot the dendrogram 
plot(fam.ward0, labels = FALSE) 

2 clusters

3 clusters
4 clusters

9 clusters

Dissimilarity

weights

Hierarchical cluster
function

Higherachical method
Distance
matrix



But how many clusters to choose? 

Is the visual inspection of the dendrogram 
enough?
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How many groups? Cluster cut-off criteria
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These tend to 
favor high 
numbers of 
clusters



How many clusters to choose?
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#test cluster solution quality 
fam.wardtest <- as.clustrange(fam.ward0, diss = om.fam, 
                           weights =family$weight40, ncluster = 7) 
 

#print the quality test for different cluster solutions 
fam.wardtest  

##           PBC   HG HGSD  ASW ASWw     CH   R2   CHsq R2sq   HC 
## cluster2 0.27 0.30 0.30 0.18 0.18 183.02 0.12 319.45 0.19 0.33 
## cluster3 0.44 0.52 0.51 0.21 0.21 163.87 0.19 310.96 0.31 0.24 
## cluster4 0.54 0.66 0.66 0.23 0.23 138.52 0.23 282.08 0.38 0.17 
## cluster5 0.56 0.71 0.71 0.23 0.23 122.67 0.26 258.69 0.43 0.15 
## cluster6 0.49 0.66 0.66 0.16 0.16 112.51 0.29 236.10 0.46 0.19 
## cluster7 0.51 0.70 0.70 0.18 0.18 108.39 0.32 237.62 0.51 0.17 

hclust outcome Distance matrix

Nr. of clusters
to test
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#plot the quality criteria 
plot(fam.wardtest,  lwd = 4) 
plot(fam.wardtest, norm = "zscore", lwd = 4) 
plot(fam.wardtest, stat = c("ASW", "HC", "PBC"), norm = "zscore", lwd = 4) 
 
 

hclust outcome

Width of the lines in the plot
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#plot the quality criteria 
plot(fam.wardtest,  lwd = 4) 
plot(fam.wardtest, norm = "zscore", lwd = 4) 
plot(fam.wardtest, stat = c("ASW", "HC", "PBC"), norm = "zscore", lwd = 4) 
 
 

Normalize the indicators for comparison == shows relative increase/decrease in 
the values of the indicators
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#plot the quality criteria 
plot(fam.wardtest,  lwd = 4) 
plot(fam.wardtest, norm = "zscore", lwd = 4) 
plot(fam.wardtest, stat = c("ASW", "HC", "PBC"), norm = "zscore", lwd = 4) 
 
 

Display selected indicators
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#plot the AWS silhouette by cluster 
summary(silh.ward <- silhouette(fam.ward, dmatrix = om.fam)) 

#plot the AWS silhouette by cluster 
summary(silh.ward <- silhouette(fam.ward, dmatrix = om.fam)) pdf('silh-ward.pdf') 
plot(silh.ward, main = "Silhouette WARD solution", col="orange") 
dev.off() 

Distance
matrix

## Silhouette of 1143 units in 4 clusters from silhouette.default(x 
= fam.ward, dmatrix = om.fam) : 
##  Cluster sizes and average silhouette widths: 
##        472        163        295        213  
## 0.31092964 0.08809121 0.06326628 0.28219562  
## Individual silhouette widths: 
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  
## -0.29858  0.07308  0.22855  0.20988  0.37262  0.50624 

cutree object

Sil. for each
cluster

Statistics on 
sil. for
individuals

Title of the plot Color of the plot



Evaluation of cluster quality

• Cluster analysis is a simplification of the data
• This simplification may be meaningful or not

• But cluster analysis always produces something!

• Cluster quality needs to be evaluated

• Several choices need to be made:
• Choose the cluster analysis algorithm

• Choose the number of groups to keep

• Cluster quality measures allow to compare (from a statistical point of view) 
solutions provided by different algorithms or numbers of groups
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Evaluation of cluster quality

“ Construct validity. Another important indicator of the validity of the 
groups found with sequence analysis is the plausibility of the results 
and their theoretical interpretability. The validation criterion referring 
to this is construct validity. Construct validity is based on the logical and 
empirical relationship among constructs (Babbie 1979). Translated to 
sequence analysis, we can state that if groupings found with sequence 
analysis relate to variables as theoretically expected, this indicates 
construct validity.” (Aisenbrey and Fasang 2010)
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Evaluation of cluster quality

• A good typology should be (Shalizi, 2009):
• generalizable to other observations

• generalizable to other properties (variables)

• linked to a theory

• Cluster analysis is a good descriptive method for the specific data at 
hand.

• Generalization only with caution!
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Recommendations

Building your sequences (coding, alignment, ...):
• Very important, determines what you can find

Clustering procedure
• Try (a lot of) different clustering algorithms
• Select the best solutions according to cluster quality measures
• Interpret them
• Select the one with the best interpretation

Interpretation
• Interpret according to cluster quality
• Do not ignore intra-cluster variability (more problematic when using clusters as 

dependent or independent variables → classification error)
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Outlook: recent developments in SA

• Multichannel Sequence Analysis (MSA)

• Additional advances in Sequence Analysis
• Visualization
• Combination with other methods to overcome limitations
• Sequence Analysis multistate model (combination with event history analysis) (Studer et al. 2018)
• BIC and LRT for sequence comparison (Liao and Fasang 2021)

More on this: 
• Sequence Analysis Association: https://sequenceanalysis.org/

• TraMineR: http://traminer.unige.ch/

• Raab, M. & Struffolino, E. (2022). Sequence Analysis. Thousand Oaks, CA: Sage.
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https://sequenceanalysis.org/
http://traminer.unige.ch/
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(7) Highest prestige, 
couple, children

(2), (3) &(4) 
Medium prestige, 

couple, 1-3 children

(1) Single, children, disrupted low 
prestige

(5) & (6) 
Childless, upward 

mobility

MSA: Seven work-family patterns – a “process measure of inequality”
(sorted by average prestige)

workfamily

Aisenbrey and Fasang 2017



Typology as dependent variable in logistic regression: 
race*gender interaction
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Black men Black womenreference: white men White women

See also: Fasang, A. E., & Aisenbrey, S. (2021). Uncovering Social Stratification: Intersectional Inequalities in 
Work and Family Life Courses by Gender and Race. Social Forces.
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And now the hands-on!

-----PHDP_SA_workshop\02_hands_on\part4
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https://sa-book.github.io/

https://us.sagepub.com/en-us/nam/sequence-analysis/book272086


