Multiple Imputation in Practice
Trivellore Raghunathan
Part 1: Lecture Slides
(Slides adapted from course slides jointly taught with Rod Little)
Comprehensive Book on Missing Data. Covers a wide variety of topics

Practice oriented books with lots of examples and codes.
Introduction
Example of missing data in surveys

• National Health and Nutrition Examination Survey (NHANES)

• Public Use Files subject to:
 – Unit nonresponse
 • noncontact
 • refusal
 – Item nonresponse
 • questionnaire interview complete, health examination missing
 • Individual items – “swiss cheese pattern”
Unit nonresponse

• Unit nonrespondents may differ from respondents, leading to
 – nonignorable missing data
 – biased estimates. A simple formula for means:

\[
\bar{Y}_R - \bar{Y} = \pi_{NR} \times (\bar{Y}_R - \bar{Y}_{NR})
\]

Bias = NR rate * difference in R and NR means
NR = nonrespondent, R = respondent
Sampling unit nonrespondents

• One approach is to follow up a subsample of nonrespondents with special efforts:
 – abbreviated interview
 – monetary incentives

• Data collected can be
 – weighted to represent all nonrespondents
 – used to (multiply) impute other nonrespondents
Item Nonresponse

• Generally leads to general “swiss-cheese” pattern of missing data

• Weighting does not work well for this pattern

• Imputation is the usual approach

• Multiple imputation propagates imputation uncertainty
Example: Attrition in longitudinal surveys

• Longitudinal studies often have drop-outs
 – Move out of study catchment area
 – Participation becomes too onerous
 – Can be viewed as item nonresponse for concatenated file of the repeated surveys

• Common analyses have problems:
 – complete case analysis is biased if drop-outs differ
 – Naïve imputation (e.g. mean imputation, last observation carried forward) involves unrealistic assumptions

• We discuss better alternatives
Other problems formulated as missing data

• Finite population inference: nonsampled units are “missing”
• Response errors: true and measured variables, where true are missing or only observed for a calibration sample
• Disclosure limitation: replace some values by imputations to reduce disclosure risk
• Inference for causal effects
Missing data defined

• Always assume missingness hides a meaningful value for analysis

• Examples:
 – Missing data from missed clinical visit (√)
 – Nonresponse in an election opinion poll (?)
 – In a longitudinal study of blood pressure medications:
 • losses to follow-up (√)
 • deaths (x)
Patterns of Missing Data

• Some methods work for a **general pattern**

• Other methods apply only to **special patterns**

- **Monotone**
- **Univariate**
- **File matching**

- **Variables**
- **Cases**
- e.g. multiple imputation for item nonresponse
Pattern versus mechanism

• Pattern: Which values are missing?
• Mechanism: Why? Reasons related to the study variables?
 – Formalize by model for mechanism
 \[Y = \text{data matrix, if no data were missing} \]
 \[M = \text{missing-data indicator matrix} \]
 \((i,j)\) th element indicates whether \((i,j)\) th element of \(Y\) is missing (1) or observed (0)
 – Pattern concerns distribution of \(M\)
 – Mechanism concerns distribution of \(M\) given \(Y\)
More on mechanisms

- Data are:
 - missing completely at random (MCAR) if missingness independent of Y:
 \[p(M \mid Y) = p(M) \text{ for all } Y \]
 - missing at random (MAR) if missingness only depends on observed components Y_{obs} of Y:
 \[p(M \mid Y) = p(M \mid Y_{obs}) \text{ for all } Y \]
 - missing not at random (MNAR) if missingness depends on missing (as well as perhaps on observed) components of Y
MAR for univariate nonresponse

\(X_j = \) complete covariates
\(Y = \) incomplete variable
\(M = 1, \) \(Y\) missing
\(0, \) \(Y\) observed
\(R = I - M\)

MAR: missingness independent of \(Y\) given \(X_1 \ldots X_k\)
That is, \(M\) can depend on \(X\)’s …
but not on \(Y\) given \(X\)’s

\[
\begin{array}{cccccc}
X_1 & X_2 & X_3 & Y & M \\
0 & 0 & 0 & 0 & 1 \\
? & ? & ? & 1 & 1 \\
? & ? & ? & 1 & 1 \\
\end{array}
\]
MAR for monotone missing data

MAR if dropout depends on values recorded prior to drop-out

MNAR if dropout depends on values that are missing (that is, after drop-out)

Censoring by end of study: plausibly MCAR

Drop-out from panel study because moved to Arizona: MAR if reasons for moving (e.g. age) captured as covariates.

Maybe MNAR for health survey
A non-monotone example

Mechanism is MAR if

\[\Pr(Y_2 \text{ missing}) = g(Y_1) \]
\[\Pr(Y_1 \text{ missing}) = f(Y_2) \]
\[\Pr(\text{complete}) = 1 - f(Y_2) - g(Y_1) \]
General Strategies

Imputation

Complete cases

Complete-Case

Analysis

Imputations

Weights

Analyze

Incomplete

e.g. maximum likelihood, Bayes

MIP-Workshop Part 1
Properties of a good missing-data method

• Makes use of partial information on incomplete cases, for reduced bias, increased efficiency

• Frequency valid ("calibrated") inferences under plausible model for missing data (e.g. confidence intervals have nominal coverage)

• Propagates missing-data uncertainty, both within and between imputation models

• Favor likelihood based approaches
 – Maximum Likelihood (ML) for large samples
 – Multiple Imputation/Bayes for small samples
Imputation Methods
Problem

Variables in The data set

\[Y_1 \quad Y_2 \quad Y_3 \quad Y_4 \quad \ldots \quad Y_p \]

Complete cases

Cases with some missing values

\[D_{\text{obs}} = \text{Observed data:} \quad \text{\includegraphics[width=0.2\textwidth]{observed_data}} \]

\[D_{\text{mis}} = \text{Missing data:} \quad \text{\includegraphics[width=0.2\textwidth]{missing_data}} \]

Y: Discrete, continuous or semi-continuous as well as multivariate
Setting

- Multiple users analyzing different subsets of variables
- Multiple analytical techniques
- Different skill levels dealing with incomplete data
- Analysis to be performed with complete data is known
- Software to perform complete data analysis is available
- Assume missing at random.
 - That is conditional on the observed characteristics the residual differences between those with missing and those with no missing values are random
Imputation:
Draws from \(\Pr(D_{\text{mis}} \mid D_{\text{obs}}) \)

Important issues:
Goal is good inferences for parameters or population quantities, not best estimates of missing values
Imputations are not real values --
Uncertainty associated with imputes should be taken into account
Features of Imputation

Good
- Rectangular File
- Retains observed data
- Handles missing data once
- Exploits incomplete cases

Bad
- Naïve methods can be bad
- Invents data –
- Understates uncertainty
Imputing Means

Unconditional

\[\hat{E}(Y_2) = \bar{y}_2 \]

Conditional on observed variables

\[\hat{y}_{i2} = \hat{E}(y_{i2} | y_{i1}) = \hat{\beta}_{201} + \hat{\beta}_{211} y_{i1} \]
Properties of Mean Imputation

- Marginal distributions, associations estimated from filled-in data are distorted

- Standard errors of estimates from filled-in data are too small, since
 - Standard deviations are underestimated
 - “Sample size” is overstated

- Conditional better than unconditional mean, which can be worse than complete cases
Imputing Draws

- Imputations can be random draws from a predictive distribution for the missing values

\[\hat{y}_{i2} = \hat{E}(y_{i2} | y_{i1}) + r_i \]

where

- \(r_i \sim N(0, s_{22i}) \), \(s_{22i} = \text{resid variance} \), or
- \(r_i = \text{residual from randomly selected complete case} \)
Imputing draws for binary data

- For binary (0-1) data, impute 1 with probability $\hat{p}_{i2} = \text{predicted prob of a one, given observed covariates}$

\[
\hat{p}_{i2} = \Pr(y_{i2} = 1 \mid y_{i1}) \quad \text{(e.g. logistic regression)}
\]

\[
\tilde{y}_{i2} = \begin{cases}
1, \text{prob } \hat{p}_{i2} \\
0, \text{prob } 1 - \hat{p}_{i2}
\end{cases}
\]
Properties of Imputed Draws

- Adds noise, less efficient than imputing means, but:
- No (or reduced) bias for estimating distributions
- More robust to nonlinear data transformations
- Conditional draws better than unconditional:
 - Improved efficiency
 - Preserves associations with conditioned variables
- Standard errors from filled-in data are improved, but still wrong:
 - Standard deviation is ok
 - “Sample size” overstated; multiple imputation fixes this
Impute conditional means or draws?

- Impute conditional means to get best estimates of missing values
 - Common in machine learning literature
- Impute conditional draws to get valid inference for parameters
 - Valid standard errors can be obtained by multiple imputation (discussed later)
 - The focus of this course
Missing covariates in regression

• What should imputes condition on?
 – Observed covariates and outcome, if imputing draws
 – Observed covariates only, if imputing means

• Imputing conditional means can be less efficient than complete case analysis, unless imputed cases are down-weighted
 – For details, see Little (1992)

• Standard errors from filled-in data are understated
Example: Should Imputations be conditional on all observed variables?

- Consumer Expenditure Survey (Bureau of Labor Statistics)

- Should the imputation of Income be conditional on Expenditure variables?

- Substantive models of interest are relationship between income and expenditure
BLS Simulation Example

- BLS researchers:
 - created population by accumulating complete cases over several years
 - drew 200 random samples of size 500 each (Before deletion data sets)
 - created missing data on income in each data set
 - supplied 200 data sets along with 55 covariates to University of Michigan
BLS Example (Continued)

- UM did not know how Income values were deleted (except that some or all of 55 covariates were used in specifying missing data mechanism)

- UM created two sets of imputations

 Using Expenditure

 Not Using Expenditure
BLS Imputations

• Imputations were created by drawing values from the posterior predictive distribution of income under an explicit model
• One included expenditure as a conditioning variable and other did not
• Two sets of imputed data sets and actual data sets were analyzed by UM and BLS respectively.
BLS Models of Interest

- **OLS model**
 \[\text{Food-At-Home} = \beta_0 + \beta_1 \text{Income} + \text{covariates} \]

- **Tobit Model**
 \[\text{Food-Away-Home} = \gamma_0 + \gamma_1 \text{Income} + \text{covariates} \]
 Left Censored Values
Estimated regression coefficients of income from undeleted and imputed data-sets: OLS Model

Imputation EXCLUDES Expenditure

Imputation Includes Expenditure
Estimated regression coefficients of income from undeleted and imputed data-sets: Tobit Model
What should imputes condition on?

• In principle, all observed variables
 – Whether predictors or outcomes of final analysis model
 – May be impractical with a lot of variables

• Variable selection
 – Similar ideas to weighting adjustments apply
 – Priority to variables predictive of missing variable (and nonresponse)
 – Favor inclusion over exclusion (more later)
Creating the predictive distribution

All imputation methods assume a model for the predictive distribution of the missing values

- *Explicit*: predictive distribution based on a formal statistical model (e.g. multivariate normal); assumptions are explicit
- *Implicit*: focus is on an algorithm, but the algorithm implies an underlying model; assumptions are implicit
Implicit modeling procedure

- Hot deck imputation
- Classify respondents, nonrespondents into adjustment cells with similar observed values
 - impute values from random respondent in same cell
 - implicit model: regression of missing variables on variables forming cells, including all interactions
Current Population Survey Hot Deck

• **Missing** (Y): Earnings Variables
• **Observed** (X):
 – Age, Race, Sex, Family Relationship, Children, Marital Status, Occupation, Schooling, Full/Part time, Type of Residence, Income Recipiency Pattern

• **Flexible matching**:
 – Joint Classification by X yields giant matrix. If a match is not found, table is coarsened or collapsed in stages until a match is found
CPS Hot Deck (continued)

Good Features
- Imputes real values
- Multivariate: associations preserved
- Conditions on X’s
- Assessments suggest method works quite well with large data sets

Bad Features
- Does not exploit previous earnings models
- Includes high order interactions at expense of main effects of omitted X’s
- Imputation uncertainty not included in standard errors

For comparison of CPS Hot Deck with stochastic regression imputation see David et al. (1986)
Other matching methods

- More generally, nonrespondents j can be matched to respondents i based on a closeness metric $D(i, j)$
 - Adjustment cell: $D(i, j) = \begin{cases} 0, & \text{if } i, j \text{ belong to same cell} \\ 1, & \text{if } i, j \text{ belong to different cells} \end{cases}$
 - Mahalanobis: $D(i, j) = (x_i - x_j)^T S^{-1}_x (x_i - x_j)$
 - Predictive Mean: $D(i, j) = (\hat{y}_i - \hat{y}_j)^T S_{Y,X}^{-1} (\hat{y}_i - \hat{y}_j)$

\hat{y}_i = regression prediction of Y given X

$S_{Y,X}$ = resid covariance matrix
Properties of matching methods

• Imputation error not propagated in standard errors from filled-in data

• One metric irrespective of outcome -- in contrast, models tailor adjustment to individual Y’s

• Predictive mean metric better than Mahalanobis metric, since more targeted to Y’s.

• Robust to model misspecification, but needs large samples: poor matches when sample is thin

See Little (1988 JBES) for more discussion
Practical Issues

• Hot deck imputation is limited
 – Variables have to be completely observed
 – Continuous variables have to be categorized

• Explicit Model is difficult
 – Large number of variables of different types
 – Restrictions
 • Question is valid only for certain subjects
 • Skip pattern
 – Bounds
 • Variables are bounded. *Example: Years smoked cannot exceed Age for current smokers and (Age-Years since Quit smoking) for former smokers. It can become more complex, if a question about teen age smoking was asked and age when started smoking was also asked*

• Bracketed responses
Sequential Regression/Chained Equation/Flexible Conditional Specification Approach

Variables With Missing Values:
\[Y_1, Y_2, \ldots, Y_p \]

Variables With No Missing Values: \(U \)

Iteration 1: \[
Y_1 \mid U \\
Y_2 \mid Y_1^{(1)}, U \\
\vdots \\
Y_j \mid U, Y_1^{(1)}, \ldots, Y_{j-1}^{(1)} \\
\vdots \\
Y_p \mid U, Y_1^{(1)}, Y_2^{(1)}, \ldots, Y_{p-1}^{(1)}
\]

Iteration \(t = 2, 3, \ldots: \)
\[
Y_1 \mid U, Y_2^{(t-1)}, \ldots, Y_p^{(t-1)} \\
Y_2 \mid U, Y_1^{(t)}, Y_3^{(t-1)}, \ldots, Y_p^{(t-1)} \\
\vdots \\
Y_j \mid U, Y_1^{(t)}, \ldots, Y_{j-1}^{(t)}, Y_{j+1}^{(t-1)}, \ldots, Y_p^{(t-1)} \\
\vdots \\
Y_p \mid U, Y_1^{(t)}, \ldots, Y_{p-1}^{(t)}
\]

Each step involves draws from the predictive distribution.
Flexible Features

- Ability to specify individual regression model
- Types of variables
 - Continuous (Normal, Tukey’s gh distribution)
 - Categorical (Logistic or generalized logistic)
 - Count (Poisson)
 - Mixed or semi-continuous (Logistic/Normal)
 - Ordinal (ordered probit)
- Non parametric procedure using Approximate Bayesian Bootstrap
- Parametric or semi-parametric regression models
- Restrictions
 - Regression model is fitted only to the relevant subset
- Bounds
 - Draws from a truncated distribution from the corresponding regression model
- Models each conditional distribution. There is no guarantee that a joint distribution exists with these conditional distributions
- How many iterations?
 - Empirical studies show that nothing much changes after 5 or 6 iterations
Summary of imputation methods

• Imputations should:
 – condition on observed variables
 – be multivariate to preserve associations between missing variables
 – generally be draws rather than means

• Key problem: single imputations do not account for imputation uncertainty in se’s. Consider next two approaches to this problem
 – bootstrapping the imputation method
 – multiple imputation
Imputation Uncertainty
Accounting for Imputation Uncertainty

• Imputation “makes up” the missing data
 – treats imputed values as the truth

• For statistical inference (standard errors, P-Values, confidence intervals) need methods that account for imputation error
 – (A) redo imputations using sample reuse methods – bootstrap, jackknife
 – (B) Multiple imputation (Rubin 1987)
Bootstrapping: with complete data

- A bootstrap sample of a complete data set S with n observations is a sample of size n drawn with replacement from S
 - Operationally, assign weight w_i to unit i equal to number of times it is included in the bootstrap sample

$$w_1, \ldots, w_n \sim \text{MNOM}(n; \frac{1}{n}, \ldots, \frac{1}{n})$$
Bootstrap distribution

• Let $\hat{\theta}^{(b)}$ be a consistent parameter estimate from the bth bootstrap data set.

• Inference can be based on the bootstrap distribution generated by values of $\hat{\theta}^{(b)}$.

• In particular the bootstrap estimate is

$$\hat{\theta}_{\text{boot}} = \frac{1}{B} \sum_{b=1}^{B} \hat{\theta}^{(b)}$$

with variance

$$\hat{V}_{\text{boot}} = \frac{1}{B-1} \sum_{b=1}^{B} (\hat{\theta}^{(b)} - \hat{\theta}_{\text{boot}})^2$$
Bootstrapping with incomplete data

• For incomplete data:
 – bootstrap the complete and incomplete cases
 – impute bootstrapped data set
 – $\hat{\theta}^{(b)}$ = consistent estimate from bth data set, with values imputed; then as before:

$$\hat{\theta}_{\text{boot}} = \frac{1}{B} \sum_{b=1}^{B} \hat{\theta}^{(b)}$$
$$\hat{V}_{\text{boot}} = \frac{1}{B - 1} \sum_{b=1}^{B} (\hat{\theta}^{(b)} - \hat{\theta}_{\text{boot}})^2$$

* Bootstrap then impute, not
* Impute then bootstrap
Imputing the bootstrap sample

• Impute so that the estimate $\hat{\theta}_b$ from imputed data is consistent. In particular:

 • conditional mean ok for linear statistics
 • conditional draw ok for linear or nonlinear statistics; more general, but loss of efficiency

• Computationally intensive: imputations created for each bootstrap data set

 $B=200, 1000$ are typical numbers
Multiple Imputation

- Create D sets of imputations, each set a draw from the predictive distribution of the missing values
 - e.g. $D=5$

\[\begin{array}{cccc}
\text{?} & \text{?} & \text{?} & \text{?} & \text{?} \\
\text{?} & \text{?} & \text{?} & \text{?} & \text{?} \\
\text{?} & \text{?} & \text{?} & \text{?} & \text{?} \\
\text{?} & \text{?} & \text{?} & \text{?} & \text{?} \\
\text{1} & \text{2} & \text{3} & \text{4} & \text{5} \\
\end{array}\]

\[\begin{array}{cccccc}
\text{1} & 2.1 & 2.7 & 1.9 & 2.5 & 2.3 \\
\text{2} & 4.5 & 5.1 & 5.8 & 3.9 & 4.2 \\
\text{3} & 1 & 1 & 2 & 1 & 2 \\
\text{4} & 24 & 31 & 32 & 18 & 25 \\
\text{5} & & & & & \\
\end{array}\]
Multiple Imputation Inference

- D completed data sets (e.g. $D = 5$)
- Analyze each completed data set
- Combine results in easy way to produce multiple imputation inference
- Particularly useful for public use datasets
 - data provider creates imputes for multiple users, who can analyze data with complete-data methods
MI Inference for a Scalar Estimand

\[\theta = \text{estimand of interest} \]

\[\hat{\theta}_d = \text{estimate from } d\text{ th dataset (}d = 1,...,D) \]

The MI estimate of \(\theta \) is

\[\bar{\theta}_D = \frac{1}{D} \sum_{d=1}^{D} \hat{\theta}_d \]

\(W_d = \text{estimate of variance of } \hat{\theta}_d \text{ from } d\text{ th dataset} \)

The MI estimate of variance is

\[T_D = \bar{W}_D + (1 + 1/D)B_D \]

\[\bar{W}_D = \frac{1}{D} \sum_{d=1}^{D} W_d = \text{Within-Imputation Variance} \]

\[B_D = \frac{1}{D-1} \sum_{d=1}^{D} (\hat{\theta}_d - \bar{\theta}_D)^2 = \text{Between-Imputation Variance} \]
Example of Multiple Imputation

- **First imputed dataset**

<table>
<thead>
<tr>
<th>Dataset (d)</th>
<th>μ_1</th>
<th>$\beta_{53:1234}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.6 (3.6^2)</td>
<td>4.32 (1.95^2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y_1</th>
<th>Y_2</th>
<th>Y_3</th>
<th>Y_4</th>
<th>Y_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>4.5</td>
<td>24</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
• Second imputed dataset

<table>
<thead>
<tr>
<th>Dataset (d)</th>
<th>μ_1</th>
<th>$\beta_{53:1234}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.6 (3.6^2)</td>
<td>4.32 (1.95^2)</td>
</tr>
<tr>
<td>2</td>
<td>12.6 (3.6^2)</td>
<td>4.15 (2.64^2)</td>
</tr>
</tbody>
</table>

2.7
5.1
31
1

2. (.) . (.)
Third imputed dataset

<table>
<thead>
<tr>
<th></th>
<th>Y_1</th>
<th>Y_2</th>
<th>Y_3</th>
<th>Y_4</th>
<th>Y_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dataset (d)</th>
<th>Estimate (se^2)</th>
<th>μ_1</th>
<th>$\beta_{53:1234}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.6 (3.62)</td>
<td>4.32 (1.952)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12.6 (3.62)</td>
<td>4.15 (2.642)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12.6 (3.62)</td>
<td>4.86 (2.092)</td>
<td></td>
</tr>
</tbody>
</table>
Fourth imputed dataset

<table>
<thead>
<tr>
<th>Dataset (d)</th>
<th>μ_1</th>
<th>$\beta_{53:1234}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.6 (3.6^2)</td>
<td>4.32 (1.95^2)</td>
</tr>
<tr>
<td>2</td>
<td>12.6 (3.6^2)</td>
<td>4.15 (2.64^2)</td>
</tr>
<tr>
<td>3</td>
<td>12.6 (3.6^2)</td>
<td>4.86 (2.09^2)</td>
</tr>
<tr>
<td>4</td>
<td>12.6 (3.6^2)</td>
<td>3.98 (2.14^2)</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>Y_1</th>
<th>Y_2</th>
<th>Y_3</th>
<th>Y_4</th>
<th>Y_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Fifth imputed dataset

<table>
<thead>
<tr>
<th>Dataset (d)</th>
<th>μ_1</th>
<th>$\beta_{53:1234}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.6 (3.6²)</td>
<td>4.32 (1.95²)</td>
</tr>
<tr>
<td>2</td>
<td>12.6 (3.6²)</td>
<td>4.15 (2.64²)</td>
</tr>
<tr>
<td>3</td>
<td>12.6 (3.6²)</td>
<td>4.86 (2.09²)</td>
</tr>
<tr>
<td>4</td>
<td>12.6 (3.6²)</td>
<td>3.98 (2.14²)</td>
</tr>
<tr>
<td>5</td>
<td>12.6 (3.6²)</td>
<td>4.50 (2.47²)</td>
</tr>
</tbody>
</table>

Mean 12.6 (3.6²) 4.36 (2.27²)

Var 0 0.339
Summary of MI Inferences

\[\hat{\theta}_D = \overline{W}_D \] \[B_D \] \[\sqrt{T_D} = \sqrt{\overline{W}_D + \frac{6}{5} B_D} \] \[\hat{\gamma}_D = \frac{1.2 B_D}{(1.2 B_D + \overline{W}_D)} \]

| \(\mu_1 \) | 12.6 \(3.6^2 \) \(0 \) \(3.6 \) \(0 \) |
| \(\beta_{53,1234} \) | 4.36 \(2.27^2 \) \(0.339 \) \(2.36 \) \(0.073 \) |

\[\hat{\gamma}_D = \frac{(1+1/D)B_D}{(1+1/D)B_D + \overline{W}_D} = \text{estimated fraction of missing information} \]

- Confidence Interval \[\hat{\theta}_D \pm t_{\nu,1-\alpha/2} \sqrt{T_D} \]
- \[\nu = (D-1)/\hat{\gamma}_D^2 \]
MI for Complex Sample Design
MI for Complex Sample Design

• Survey Designs involve stratification, Clustering and Weighting
• Ignoring the survey design variables may introduce bias if they are correlated with substantive variables in the survey
• One option is to use the survey design variables as predictors
 – Impute each stratum separately or include strata as dummy variables
 – Use Weight variables as predictors
 – Use random effects to account for clustering
 – See, Yucel et al (2017, JSSAM), for an extension of Sequential Regression Approach
Option 2: “Uncomplex” and Impute

• Create synthetic populations by incorporating the complex sample features in a Non-parametric Bayes approach

• Impute the missing values in the synthetic populations using the regular SRMI (or any other procedure or even maximum likelihood)

• Combine estimates to form a single inference

• Implemented in IVEware (BBDESIGN module)
Overview

• Step 1: Bayesian Bootstrap to create nonsampled clusters within each stratum (Repeat S times)
• Step 2: Finite population weighted Bayesian Bootstrap to create nonsampled subjects within each cluster (Repeat B times for each draw in Step 1)
• Step 3: Multiply impute the missing values (L imputations) in each of the SxB synthetic populations
• A total SxBxL data sets are generated
Combining rules

• **Point Estimate**
 \[
 \hat{\theta}_{sbl} = \text{Estimate } s = 1, 2, \ldots, S; b = 1, 2, \ldots, B; l = 1, 2, \ldots, L
 \]
 \[
 \overline{\theta}_{MI} = \sum_s \sum_b \sum_l \hat{\theta}_{sbl} / (SBL)
 \]

• **Variance estimate**
 \[
 \hat{V}_{MI} = (1 + S^{-1}) \sum_l (\overline{\theta}_{++} - \overline{\theta}_{MI})^2 / (S - 1)
 \]
 \[
 \overline{\theta}_{++} = \sum_b \sum_l \hat{\theta}_{sbl} / (BL)
 \]

• **Confidence intervals**
 \[
 t - \text{distribution} : \nu = \min(c - H, S - 1)
 \]
 \[
 c = \# \text{clusters}
 \]
 \[
 H = \# \text{strata}
 \]
Choice of (S, B, L) and population sizes

• S may be fixed at c-H (complete data degrees of freedom)
• B and L are used mostly to obtain stable average estimate for each synthetic population
• For example (NHANES) (S=25, B=10 and L=10), (S=25, B=5, L=5) gave similar results for logistic and linear regression analyses
• Number of nonsampled clusters: C-c and the number of nonsampled elements within a cluster: N-n.
 – Approximation: \(C = \infty; N = n / f; f = 0.01, 0.001 \)
 – Weights: Assume only combined final weight is available
• Computationally intensive (4,800 or 1,200 estimates).
• No variance estimate is needed from each synthetic data set
• See IVEware user manual for examples
Applications and Software
Applications of MI

• Survey of Consumer Finances, 1992
 – 5 multiply imputed data sets

• National Health and Nutritional Examination Survey
 – 5 multiply imputed data sets for a selected set of variables in NHANES-III. Uses multivariate normal model.

• National Health Interview Survey 1997-Present
 – Multiple imputation of missing family income and personal earnings (IVEware, PROC MI in SAS).

• Numerous applications in a variety of fields. Becoming a very common approach.
Software

• Sequential regression imputations
 – R and Stata (MICE, ICE, MI, IVEware)
 – Standalone (IVEware)
 – SAS (IVEware), PROC MI
 – SPSS (IVEware)

• MI-Analysis
 – PROC MIANALYZE
 – IVEware (can handle complex sample survey)
 – MI (Stata)
 – MITOOLS (R)
 – SUDAAN
IVEware

- A collection of SAS, R, SPSS, STATA, C and Fortran routines
- Handles linear (Continuous), logistic (Binary), multinomial logistic (categorical), Poisson (Count) and two-stage linear/logistic (Mixed or semi-continuous)
- Semiparametric regression models
 - Response propensity and Predictive mean stratification
 - Tukey’s gh-distribution
- Stepwise selection possible at each step to save computation time (use with caution and only if it is absolutely necessary)
- Add interaction terms
- Specify bounds
- Specify logical restrictions and skip patterns
- Imputation diagnostics
IVEware

• Issues
 – Convergence
 – Several completed data statistics seem to converge to the same value regardless of seeds
 – Several articles establish conditions for convergence
 – Good fitting models are needed to get results with desirable repeated sampling properties
Model Diagnostics

- Good fitting regression models are key to obtain valid imputations
- Model building involves exploratory analysis, such as scatter plots, histograms etc
- Residuals from the current model need to be checked and refine the models, if necessary
- Model building tools, posterior predictive checks etc. are important component of imputation process
- Poorly fitting models can result in bias and may even be worse than the complete case analysis
Imputation Diagnostics

• Compare the distributions of the imputed and observed values
 – Under MCAR they should be similar
 – Not under MAR, even with the good fitting model

• Compare conditional distributions

 Under MAR

\[
\begin{align*}
 f(y_{obs} \mid x) &= f(y_{imp} \mid x) \quad \text{or} \\
 f(y_{obs} \mid e(x)) &= f(y_{imp} \mid e(x)) \\
 e(x) &= \Pr(y \text{ is missing})
\end{align*}
\]

 – Scatter plot of Y versus X, observed and imputed values different symbols or colors
Creating Multiple Imputations

- Multiple Imputations created within a single model take into account within-model uncertainty
- Multiple Imputations can also be created under alternative models, to account for imputation model uncertainty
- Imputations can be based on implicit or explicit models, as for single imputation
Summary of Imputation

- Sequential Regression/Chained Equation is a flexible approach for handling missing data with varying type of variables and complex structure.
- Standard regression diagnostics can be used to fine tune the model to fit the observed data well.
- Models can be parametric, semi-parametric or non-parametric.
- Many software available to implement the method.
- It is easy to program using a macro environment.
Summary of Multiple Imputation

• Retains advantages of single imputation
 – Consistent analyses
 – Data collectors knowledge
 – Rectangular data sets

• Corrects disadvantages of single imputation
 – Reflects uncertainty in imputed values
 – Corrects inefficiency from imputing draws
 • estimates have high efficiency for modest D, e.g. 10